Search results: 1922
This course focuses on learning data science through the interest to development and improvement of capability of solving rich problems from data point of view in a systematic and principled way by using high quality instructions and basic level data science techniques. Students will be introduced to what data science is, will discover the applicability of data science across fields, and will learn how data analysis can help them make data driven decisions. Students will gain familiarity with various open source tools and data science programs used by data scientists, like Jupyter Notebooks, RStudio, GitHub, and SQL. This course provides the students with the required structure and responsibilities in order to educate them as data scientists progressing a right way with high concluding capabilities.
- Teacher: Jana Alhajj
- Teacher: Kian Jazayeri
- Teacher: Daniel Okpala
This course looks into internet and global network concepts are taken up in detail. This course also deals with the most popular topics such as the history of Internet, a general overview of the internet based opportunities and applications (such as e-mail, internet browsers, file transfer opportunities, list drivers, etc.) internet based research and information resources, the global network services, creation of web pages using HTML. A history of the technologies appeared upon development of internet and an overview of the mentioned technologies together with the methods of utilization of these technologies for personal and business purposes is provided to the students.
- Teacher: Andre Sena
Bu derste, kökleri bilgisayar bilimi, yapay zeka ve istatistik olan istatistiksel makine öğrenimi işlenir ve bilgisayarların 'öğrenme' süreciyle performanslarını iyileştirmelerine, karar vermelerine ve tahmin etmelerine olanak tanıyan geniş bir algoritma anlayışı sağlanır. Derste temel yöntemler öğretilir ve gerçek verilere uygulanır. Başlıktaki istatistiksel terimi, makine öğrenimine baskın yaklaşımlar oluşturan istatistiksel teknikleri vurgular. Ders, metodolojiyi teorik temeller, hesaplama unsurları ve istatistiksel teori konularıyla bütünleştirir ve öğrencilere modern istatistiksel makine öğrenimi yöntemlerinin ardındaki temel fikirleri ve sezgileri sağlar. Bu dersi tamamlayan öğrencilerin, konuşma tanıma, internet arama, biyoinformatik, görüntü ve ses sinyali analizi, veri madenciliği ve keşifsel veri analizi konularında denetimli ve denetimsiz öğrenme yaklaşımlarını öğrenmeleri beklenmektedir.
In this course, statistical machine learning which has roots in computer science, artificial intelligence and statistics is covered and a broad understanding of algorithms that allow computers to improve their performance through the process of ‘learning’ and enable them to make decisions and predictions is provided. Fundamental methods are taught and applied to real data. The term statistical in title emphasizes the statistical techniques, which form dominant approaches to machine learning. The course integrates methodology with theoretical underpinnings, computational elements, and statistical theory issues. By completion of this course, students are expected to learn about supervised and unsupervised learning approaches to speech recognition, internet search, bioinformatics, image and audio signal analysis, data mining and exploratory data analysis.
- Teacher: Yasemin Bay
Data mining, which is the study of algorithms and computational paradigms that enable computers to search datasets for patterns and regularities and make predictions and forecasts is covered in this course. Knowledge discovery is introduced comprehensively. The course explores data selection, cleaning, coding, the application of various statistical and machine learning approaches, and visualization of the resulting structures, which are all steps in knowledge discovery. Students who successfully complete this course are supposed to learn about several data mining techniques, including classification, rule-based learning, decision trees, and association rules. Additionally, students are expected to learn about selection and cleaning of data, machine learning methods for "learning" about "hidden" patterns in data, and reporting and visualizing the resulting knowledge.
- Teacher: Yasemin Bay
- Teacher: Kian Jazayeri
The concepts of data science will be covered throughout the course from a variety of angles, including conceptual formulation and properties, solution algorithms and their applications, data visualization for exploratory data analysis, and the appropriate presentation of modeling outcomes. With the use of real-world examples, students will understand the purpose, effectiveness, and constraints of models. Upon completion of the course, students will be able to comprehend the contemporary data science landscape and technical terminology, identify key concepts and tools in the field of data science and determine when they can be applied effectively. Students will also be able to recognize the significance of curating, organizing, and wrangling data, explain uncertainty, causality, and data quality and anticipate the effects of data use and misconduct.
- Teacher: Kian Jazayeri
This course covers the algorithmic techniques and approaches required to handle various types of structured, semi-structured and unstructured data. The goal of the course is to teach algorithmic methods that serve as the cornerstones for handling and analyzing large datasets in a variety of formats. The course specifically covers how to pre-process big datasets, store big datasets effectively, design quick algorithms for big datasets, and evaluate the performance of designed algorithms. Algorithms for sorting, searching and matching as well as graph and streaming algorithms will be introduced. Upon completion of this course, students will have a broad knowledge of different algorithms for pre-processing, organizing, manipulating and storing different data types. Students will also be able to carry out performance analysis of each algorithm.
Makine öğrenimi kavramı ve altında yatan olasılıksal ve istatistiksel yaklaşımlar bu derste baştan sona geniş çaplı bir şekilde ele alınmaktadır. Veri bilimi için makine öğrenimi kavramı çok değişkenli veri analizi için gerekli araç ve tekniklere odaklanılarak kapsamlı bir şekilde gözden geçirilmektedir. Bu dersi alan öğrencilerin temel matematik ve Phyton programlama altyapısına sahip olmaları beklenmektedir. Bu dersi tamamlayan öğrenciler belirsiz verileri olasılıksal modeller ile ele almak için gerileme, sınıflandırma, kümeleme, boyutluluk indirgeme ve değerlendirme yöntem ve tekniklerini uygulama becerilerine sahip olacaklardır. Bu dersi tamamlayan öğrenciler, deneme yanılma yoluyla kendi kurallarını ortaya koyarak problem çözebilen sistemleri, verilerdeki örüntüleri otomatik olarak tanımlayan sistemlerle karşılaştırabileceklerdir.
In this course, the concept of machine learning and its underlying probabilistic and statistical approaches will be covered extensively with a focus on the tools and techniques required for multivariate data analysis. Students taking this course are expected to have basic mathematics and Python programming background. Students completing this course will have the skills to apply regression, classification, clustering, dimensionality reduction and evaluation methods and techniques to handle uncertain data with probabilistic models. Upon completion of this course, students will be able to compare systems that can solve problems by coming up with their own rules via trial and error with systems that automatically identify patterns in data.
- Teacher: Yasemin Bay
This course provides an understanding of numerical mathematic applications in data science. The floating-point representation of real numbers, truncation and round off errors, iterative approaches, and convergence are some of the main points in numerical mathematics that are covered in this course. Students will study the most basic and crucial algorithms for the fundamental numerical mathematics problems, such as the solution of algebraic equations, numerical estimation of derivatives and integrals, solution of differential equations, approximation of functions by polynomials and Fourier series and solution of systems of linear algebraic equations. Upon completion of this course, students will be able to formulate and solve problems using mathematical methods and tools, identify, understand, and solve algebraic equations and develop experience with numerical and symbolic mathematical software.
- Teacher: Tolgay Karanfiller
The growth of digital marketing is the most important yet unpredictable trend in marketing today. How can the online world be harnessed by the companies of today and tomorrow to grow their marketing impact? What role do information and databases have to play in this system? And why do some non-digital means of direct marketing still remain so powerful? this course brings great expertise across direct, database and digital marketing to provide comprehensive, compelling coverage of the key theory and debates of the fields.
- Teacher: Homayoun Safavi
- Teacher: Naziyet Uzunboylu
- Teacher: Ayman Aboutaha
- Teacher: Soroush Ebrahimfar
- Teacher: Emre Er
- Teacher: Zehra Ulucanlar
- Teacher: Seda Yildirim
Bu dersin amacı dental anestezi araçlarını, lokal anestezik ilaçları, dental anestezi yöntemlerini, dental anestezinin lokal ve sistemik komplikasyonlarını öğretmektir. Dent306 Dental Anestezi dersinden sorumlu öğrencianestezinin tanımını ve kullanım alanlarını anlar, anestezi yapılacak ilgili kraniyal sinirler ve anatomik oluşumları kavrar. Anestezi yaparken dikkat edilmesi gereken klinik kurallar ve genel kuralları öğrenir. Dental anestezi araç ve gereçlerini kavrar. Lokal anestezik ilaçları ve etki mekanizmalarını öğrenir. Vazokonstrüktörleri tanımlar. Öğrenci aynı zamanda maksilla ve mandibulada yapılan dental anestezi türleri ve yöntemlerini belirler. Dental anestezi sonrasında oluşabilecek lokal ve genel komplikasyonlarıanları açıklar. Premedikasyon, sedasyon ve genel anesteziyi öğrenir. Premedikasyon ve sedasyon ajanlarını tanımlar.
Basic principles of oral surgery, systemic diseases, asepsis-antisepsis, indications and contindications of tooth extraction, extraction instruments and techniques of tooth extraction, wound healing, alveolitis and treatment methods, complications of tooth extractions.
- Teacher: Abdullah Alalwani
- Teacher: Ertan DelIlbaSi
- Teacher: Erim TandoGdu
| To learn the students how to take a medical history, perform an extra-oral and intra-oral examination, have knowledge of radiation, radiation damages and radiation protection, evaluate the systemic symptoms, elicit the vital symptoms and the reason of the pain, elicit the maxilla, sinus, salivary gland, arthrosis pathology, and radiology, perform laboratory inspections and make a diagnosis and the treatment plan of the patients, perform an implant implementation and a radiographic assessment, elicit the lesions on radio-opaque, radiolucent and soft issue on bones. | |
learn to take patients dental-medical history, to do detailed
clinical examination of the oral tissues and radiographs to assess oral health,
with the object of developing a treatment planning of
oral diseases and systemic diseases that
show indications in the mouth.
- Teacher: Mujgan Firincioglulari
- Teacher: Mujgan GUndUz
Types of radiographs used in the maxillofacial region, pathologies in the jaws and their radiographic appearances
Course content: Functional anatomy of the periodontium and related
structures and general characteristics, etiology and treatment of
various forms of periodontal diseases and establishing a basis for
clinical practice in periodontology
Aim of the Course:
- A
broad knowledge of sciences basic to periodontology
- A
broad knowledge of clinical medicine and surgery, in regard to interactions of
periodontal
and systemic diseases and of the periodontal management of the
medically
compromised patient
- A
broad knowledge of periodontal epidemiology and the role periodontology in
public
health dentistry
-
Intensive knowledge of clinical periodontics
-
Clinical and theoretical expertise in the presentation, diagnosis and treatment
of
- Teacher: Rahme Barbaros
The contents of this course are healthy periodontal tissues, periodontal surgery equipments and curette usage techniques. Studentdefines the periodontal tissues morphologically and histologically and distinguishes the healthy and diseased tissues, follows evidenced based dentistry knowledge and uses this contemporary information during the professional practice. Defines the microbiologic, immunologic and genetic properties of periodontal diseases and evaluates the effects of these properties to disease progression. Interprets the transition from health to disease by analyzing the factors that play a role in the development of periodontal disease (calculus, smoking, occlusion, etc.). Recognize periodontal hand tools and learn curette usage techniques. Understands the techniques of tartar cleaning and polishing. Applies oral care techniques.
- Teacher: Amir Forghanbin
- Teacher: Nurdan Kurtulus